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Micro-hydrodynamics is a term used to describe the search for and study of 
hydrodynamic phenomena at microscopic scales. The principal method used to 
accomplish this research is molecular dynamic (MD) simulations. Com- 
putational limits on MD models restrict the size of the system and simulation 
time. Typically, the length scales are on the order of 10-1000 ~ and time scales 
10-1000 psec (thus the qualifier micro). We review the results of our research in 
this area. We use MD to model channel flow, flow past a plate, flow past a 
cylinder, and Rayleigh-Benard convection. In general, we find that the behavior 
in these models agrees with results obtained from experiment and more 
traditional theoretical approaches, such as solving the Navier-Stokes equations. 
In addition to the appearance of spatial and temporal patterns, we observe 
scaling relations in agreement with those predicted by macroscopic 
hydrodynamics. In some specific situations, we can see the breakdown of 
Navier-Stokes theory and estimate its limits. 
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1. I N T R O D U C T I O N  

Molecular dynamics (MD) simulations have been used over the past 30 
years to study behavior in a large variety of systems. It has proved to be a 
valuable tool for research of behavior in gases, liquids, and solids both in 
and out of equilibrium. The facets of behavior studied are far too numerous 
to mention. Instead, we will concentrate on the study of dynamical 
behavior in fluids and refer the interested reader to several excellent review 
articles.~l 3) 

As recently as 2 years ago, the study of nonequilibrium fluids covered 
only the very simple situations where the system is subjected to either a 
thermal gradient ~4 7) or a constant shear. (8 ~4) These two systems are 
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important in studying the behavior of transport coefficients as a function of 
the applied gradient. It was observed in these simulations that such systems 
obey Poisson's equation even when the gradients are extremely large (up to 
109K/cm for the thermal gradient and 10~~ for the velocity 
gradient). That is, the resulting behavior agreed with that predicted by 
macroscopic theory. However, at this time, the question still remained as to 
whether simulations of systems of particles moving along trajectories 
governed by Newton's laws of motion could exhibit the spatial and/or tem- 
poral structures seen in experimental and theoretical studies of macroscopic 
systems. An even more important question is, given that these structures 
can be seen at microscopic scales, would they behave according to the 
scaling relations observed in macroscopic fluid dynamics? 

The initial objective of our research was therefore to determine if such 
structures could be seen in MD simulations. As the research progressed, we 
found that the answer to the above two questions is affirmative. The initial 
objective thus evolved into three objectives, all of which are currently 
under investigation. First, to determine the kinds of hydrodynamic 
behavior that can be observed in MD simulations. Second, to develop the 
relationship between microscopi c and macroscopic behavior. And, finally, 
to provide information on phenomena that can only be studied from a 
microscopic point of view due to inherent limits of Navier-Stokes theory. 

The computational facilities at the IBM Scientific and Engineering 
Center in Kingston, New York allow simulations of systems of up to 
500,000 particles to be accomplished in a reasonable amount of time. Such 
large numbers are required to reach the critical values of the scaling num- 
bers where bifurcations are expected to occur and to obtain a reasonable 
signal-to-noise ratio in cells representing the smallest scales over which 
measurements are taken. The LCAP-2 computer is comprised of ten FPS- 
264 processors with 1 megaword of local memory each attached to an IBM 
mainframe. The ten attached processors can be run in parallel. Inter- 
processor communications are accomplished through use of FPS buses or a 
separate bulk memory accessible to all processors. This facility allowed us 
to simulate 1 psec of system time (100 integrations of the 1,500,000 
equations of motion) in as little as 3 min of real time. 

2. T H E  M D  M O D E L  

The MD model is a system of N particles enclosed in a parallelepiped 
of size Lx x Ly x Lz (simulations of two-dimensional systems have Lz = 1). 
The atoms interact through a Lennard-Jones-type potential of the form 
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with a range extending up to 21/6o ". The short cutoff serves to speed up the 
computations without dramatically affecting the transport properties of the 
system. The parameters used for this potential function in our simulations 
correspond to the interatomic potential for argon, i.e., a = 3.405 ~ and 
e = l19.SkB. The average system density and temperature are chosen to 
reflect argon in the liquid state (p = 0.845/a 3 in 3D, p = 0.832/o -2 in 2D, and 
T =  86.5 K). 

The system boundaries are variations of three basic types. Periodic 
boundaries are boundaries outside of which the system repeats itself. For 
example, in a system with periodic boundaries at x = -L/2 and x = +L/2, 
a particle located at (0, y, z) will have images located at ( - L ,  y, z) and 
(+L, y,z). Particles just inside the boundary at x =  +L/2 will interact 
with images of particles just inside the boundary at x =  -L/2; particles 
crossing the boundary at x = +L/2 will have images crossing the boundary 
at x = -L/2. 

Thermal boundaries serve as a model for particle behavior at physical 
boundary walls. A particle colliding with a thermal boundary will be re- 
injected into the system with a new set of velocities drawn randomly from a 
Maxwell-Boltzmann distribution characterized by the wall temperature 
T,,. Since the components of the velocity in the directions parallel to the 
wall will, on average, vanish, thermal boundaries are considered to be 
models of no-slip boundaries. Specular boundaries, on the other hand, 
maintain continuity of the tangential components of velocity during a par- 
ticle-wall interaction. These are then considered to be a model for slip 
boundaries. Particles located in the neighborhood of a specular boundary 
will experience a force directed along the shortest particle-wall distance of 
the same magnitude as the force exerted by a particle located just outside 
of the wall. In addition to the external botindary link to the outside world, 
the system can also be subject to acceleration fields of varying magnitude, 
which serve to induce a net flow. 

The initial conditions for the system have the particles located on a 
cubic lattice with velocities drawn randomly from a Maxwell-Boltzmann 
distribution at T = 86.5 K. Interparticle forces are computed using a nearest 
neighbor cell search that minimizes the time spent searching for and 
eliminating particle pairs whose separation is greater than the potential 
cutoff. A fourth-order Adams-Bashforth predictor-corrector integrator is 
used to advance the particles along their trajectories. (15) The integration 
time step is dependent on the highest temperature achieved in the system. 
The condition that total energy be conserved in an equilibrium system at 
this temperature yields time steps in the 10-14sec range. After each 
integration step, the particle-wall interactions are computed and the 
dynamics of the affected particles modified. The algorithm consists of the 
repetition of the steps: calculate the force on each particle, integrate the 
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equations of motion, and modify particle behavior to reflect boundary 
conditions. 

For the purpose of measuring system behavior, the system is covered 
with a grid of cells. The values of the thermodynamic variables and their 
fluxes are computed for each cell by averaging the appropriate properties of 
the particles located inside the cell. The system is considered to be in its 
final state when its hydrodynamic variables (p, T, and v) measured at 
various points in the system are either stationary or exhibit steady 
oscillations over time. 

3. C H A N N E L  F L O W  

Channel flow is the two-dimensional analog of a pipe flow. Such a 
system describes behavior near the surface of a fluid flowing in a deep 
channel. In the MD model for channel flow, (16) we consider a system of 
particles bounded by thermal walls in one coordinate (say x) and periodic 
in the other coordinates (say y and/or z). Flow is induced by subjecting the 
particles to an acceleration field along a direction parallel to the thermal 
walls. A steady state will be reached when the energy added to the system 
from the acceleration field is balanced by the energy removed from the 
system through the thermal walls. 

In this situation and assuming the fluid to be incompressible, the 
hydrodynamic equations for velocity and temperature reduce to 

V2v = Pg 

v 2 r =  t 0xi/ ,j= 1, 2, 3 

where p is the mass density, g is the gravitational field, t/ is the dynamic 
viscosity, and k is the thermal conductivity. 

When subjected to the boundary conditions 

vy(x = - L / 2 )  = vy(x = +L/2) = 0 

and 
T(x = - L / 2 ) =  T(x = +L/Z)= Tw 

these equations can be solved exactly, giving 

Vx~I)z~O 

T= T~, 12 ktl x 4 -  "2 
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Macroscopic theory predicts that the velocity will exhibit a parabolic 
profile and the temperature a quartic profile across the channel. Further, 
the viscosity and the thermal conductivity can be found from the cur- 
vatures of these profiles. 

We have performed simulations for a large number of channel flow 
systems in which we studied behavior in two and three dimensions for a 
number of different channel widths and acceleration field magnitudes 
(initial results are contained in ref. 16). In all of these simulations, the 
expected behavior is observed. Away from the thermal walls, we see a 
parabolic profile for the velocity and a quartic profile for the temperature. 
Measurements of the profile curvatures yield viscosities and thermal con- 
ductivities that are consistent with values measured experimentally. In 
Fig. 1, we show the velocity and temperature as a function of the cross 
channel coordinate. Points reflect actual measurements taken from the 
steady-state MD simulation; lines reflect a least squares fit of the points to 
the expected form of the profile. 
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Fig. 1. Velocity (top) and temperature (bottom) profiles for a channel flow. The system 
consists of 21,000(42 x 500) atoms enclosed in a rectangular of 156.7/~ • 1866 A. 
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In ,Fig. 2, we show the density as a function of the cross channel coor- 
dinate. The density is flat across the channel except in the regions close to 
the walls, where it seems to exhibit a sharp increase. Further simulations 
with a finer measurement grid give us a better idea of the actual behavior 
near the channel walls. The fluid organizes into a layer structure (see 
Fig. 2) within ten atomic diameters of the thermal walls. In our 
simulations, this layering phenomenon is independent of the magnitude of 
the acceleration field and the channel width. The layering has also been 
observed in other MD simulations where different potential functions and 
different models for the system boundaries are used. (17) The layering 

1.45 

1.35 

1.25 

Regression 
�9 Cell Average 

-20 .0  2(3.0 60.0 

x (A) 

Fig. 2. 

2 .5  

1 .5  

0 . 5  

- - R e g r e s s i o n  
�9 Cell Average 

J 
-7'3.o ' - 6 2 . 0  - 5 3 . 0  

x (A) 

Coarse-grid (top) and fine-grid (bottom) density profiles for the channel flow 
discussed in Fig. 1. 
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structure leads us to conclude that we are observing the breakdown of 
Navier-Stokes theory. There is some recent experimental evidence of this 
layering phenomena. (19) 

4. FLOW PAST A PLATE 

Fluid flowing past a flat plate should be the easiest system in which to 
observe spatial structure since, macroscopically, the system is expected to 
exhibit vortices at any nonzero Reynolds number (2~ defined in this case to 
be 

Re = vL/v 

where v is the velocity far from the plate, L is the plate length, and v is the 
kinematic viscosity. In fact, MD simulations of this system were the first 
such simulations to show the formation of spatial structures. Computer 
simulations have been performed for the situation where the plate is 
dragged through the fluid (21) and for the situation where the fluid is caused 
to flow past a stationary plate. (22~ Our simulations involved the latter. 

The MD system in this case consists of 10,000 particles in a rectangle 
(2D). The particles are caused to flow past a thermalizing plate by 
imposing an acceleration field in the direction normal to the plate. The 
boundaries parallel to the direction of flow are periodic. The boundaries at 
the head end and tail end of the flow are modified boundaries. These boun- 
daries are separated by an equilibration region which behaves as a thermal 
bath. The computation of interparticle forces treats these boundaries as 
periodic. The computation of particle-wail interactions treats particles in 
the bath as if they were surrounded by thermal walls. Particles leaving the 
system must travel through the bath before they can be considered as 
candidates for reentry. During this time, the particles thermalize through 
interactions with the bath walls and other particles in the bath. Coincident 
with a particle entering the bath from the tail end of the system, the par- 
ticle in the bath closest to the head end of the system is released for reentry. 
This device serves to separate behavior at the head end of the flow from 
that at the tail, keep a constant number of particles in the flow system, and 
maintain continuity of the interparticle potential. 

The simulations were carried out for several values of the acceleration 
field strength: 0.625, 2.5, 5.0, and 10x 10~4cm/sec 2. For system with 
g = 2 . 5 x  10~4cm/sec 2, the appearance of two counterrotating vortices 
immediately behind the obstructing plate is first observed after 120 psec of 
simulation time ( ( v x ) =  19,000cm/sec). The distance between the plate 
and the center of these vortices increases with increasing velocity until 
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the system reaches a steady state after 200psec of simulation time 
((v~) = 21,500 cm/sec). The vortex size and location, as well as the average 
system velocity, remain stable over an additional 300 psec of simulation 
time. The density contour and velocity field for the steady-state system 
based on statistics taken over the last 100 psec of simulation time are 
shown, respectively, in Fig. 3. Note that we take advantage of the 
symmetry about the midplane to enhance the signal and thus show only 
half of the system in the figure. 

The small size of the system places inherent limitations on the range of 
parameters that can be simulated. For g < 0.625 • 10 ~4 cm/sec 2, observation 
of the vortices is hindered by thermal noise (the average system velocity is 
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Fig. 3.. Density contour  (top) and velocity field (bottom) for a flow past a plate. The system 
consists of 10,000 particles in a square of side 373.22/~. In the density contour,  the baseline 
density is 1.125 g/cm 3. In the velocity field, the arrow lengths are scaled as the square root of 
the ratio of individual cell velocity to max imum cell velocity; the cell centers are located at the 
origins of the arrows. 
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of the order of thermal noise); for g > 5  x 1014 cm/sec 2, the vortex size is 
influenced by the presence of a boundary at x = L. In the range of velocities 
studied (0.135c to 0.480c, where c is the sound speed for argon at its triple 
point, 86,400 cm/sec), the fluid is highly compressible: densities in the 
system are found to range from 1.422 g/cm 3 immediately in front of the 
plate to 1.135 g/cm 3 immediately behind the plate for the system shown in 
Fig. 2. This large variation of the density and stress prevents us from 
making any realistic determination of the Reynolds number and thus 
making any quantitative comparisons with macroscopic theory. 
Nevertheless, within the above range of simulation parameters, we do 
observe that the vortex size and the steady-state distance between the plate 
and the vortex center are roughly proportional to the average mass flux in 
the system (which itself is proportional to the Reynolds number). This 
result is at least in qualitative agreement with the macroscopic theory. 

5. FLOW PAST A CYLINDER 

Encouraged by the results of the channel flow and flow past a plate, 
we have carried out a more thorough study of the flow past a cylinder. The 
behavior in this system can be characterized by two dimensionless scaling 
numbers. (23/The Reynolds number 

Re = 2vR/v 

where R is the cylinder radius, can be considered a scaled velocity. The 
Strouhal number, 

St = 2R/w 

is a scaled time for temporal behavior in the system (3 is the characteristic 
time). Macroscopic experiments involving fluid flowing past a cylinder 
exhibit the formation of two counterrotating eddies immediately behind the 
cylinder at Reynolds numbers above 10. Periodic vortex shedding sets in at 
Reynolds number above 40 characterized by a Strouhal number starting at 
0.11 and increasing with increasing Reynolds number to a maximum of 
about 0.22. (24) In an MD simulation of this system we should be able to 
observe the periodic behavior. In addition, this will give us a chance to 
compare microscopic values of the scaling numbers with macroscopic 
observations. 

The MD system for simulating flow past a cylinder consisted of 
160,000 particles in a square (2D) of side 1500 ~. The particles, under the 
influence of an acceleration field, flow past a cylinder with thermalizing 
boundaries. The radius of the cylinder is about 125 A. The external boun- 
daries are the same as those used in the flow past a plate simulation. That 
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is, the boundaries parallel to the direction of flow are periodic; the boun- 
daries perpendicular to the direction of flow are modified periodic. 

Again, simulations were run for a number of different values of the 
acceleration field. We show results for one run where the acceleration field 
was 7.2 x 1013 cm/sec 2. In Fig. 4, the average system velocity is plotted as a 
function of time (the simulation started with the system at rest). After 
about 800 psec of simulation time, two counterrotating vortices appear 
immediately behind the cylinder. These vortices increase in size over the 
next 700 psec, and then begin separating from the cylinder. The separation 
process is one in which each vortex in turn detaches from the cylinder and 
moves downstream. Separation oscillates between the two vortices. The 
series of streamline contours shown in Fig. 5 graphically demonstrates 
the oscillating separation phenomena. This behavior repeats itself 
approximately every 600 psec. The Reynolds number for this final state is 
somewhere in the range of 30-70 (variations in density and stress prevent a 
more accurate determination). The Strouhal number is approximately 0.15. 
It is remarkable that a system with a length scale measured in angstroms 
and a velocity measured at 30,000 cm/sec shows the same scaling as that 
seen in macroscopic systems. 

6. R A Y L E I G H - B E N A R D  C O N V E C T I O N  

The Rayleigh-Benard problem is perhaps the most studied 
hydrodynamic instability. It comes about as a result of competition among 
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(a) (e) 

(b) (d) 

Fig. 5. Streamline contours at (a) t =  130psec, (b) t = 2 5 0  psec, (c) t=410psec ,  and (d) 
t = 530 psec for flow past a cylinder. ( - - - - - )  Streamlines are zeros of the stream function 
representing points of separation or reattachment where in contact with cylinder; ( ) 
streamlines represent steps of 0.1 in the stream function; ( - - - - )  streamlines represent steps of 
0.5 in the stream function; (...) streamlines represent steps of 1.0 in the stream function. 

buoyant forces, thermal dissipation, and viscous drag. A layer of fluid 
under the influence of a thermal gradient is set up so that the resulting den- 
sity profile is inverted with respect to the gravitational field. Buoyant forces 
cause the lighter material to rise; viscous forces present a drag on any 
motion; thermal dissipation leads to equilibration of the rising material 
with its surroundings. The competition among these three processes and 
the resulting behavior in the fluid can be characterized by the dimen- 
sionless Rayleigh number, defined as 

Re = ~A Tg d3 
KV 

where ~ is the compressibility, AT is the temperature difference across the 
fluid layer, g is the magnitude of the gravitational field, ~c is the thermal dif- 
fusivity, v is the kinematic viscosity, and d is the depth of the fluid layer. 
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A linear stability analysis of the hydrodynamic equations for this 
system shows that the state in which heat is conducted through the layer 
becomes unstable to a state in which heat is conveeted through the layer at 
a critical value of the Rayleigh number Rc dependent on the nature of the 
top and bottom boundaries (Re = 657.5 for slip boundaries; R~ = 1707.8 for 
no-slip boundaries)/TM At these marginal stability points, convection sets 
in at a selected wavelength that determines the spatial periodicity in the 
direction perpendicular to both the thermal gradient and the gravitational 
field (2 = 2.828d for slip boundaries; 2 = 2.016d for no-slip boundaries). A 
convection cell, defined over one wavelength, consists of a pair of counter- 
rotating vortices. 

The MD system for simulating this instability consisted of 200,480 
particles in a rectangle (2D) of length L =  3341 ~ and depth d=  836 ~ (4:1 
aspect ratio). The top and bottom walls are thermalizing boundaries; the 
side walls are specular boundaries. The bottom wall is maintained at 
486.5 K, the top wall at 86.5 K. The magnitude of the gravitational field is 
used as the control parameter. A rough calculation, using experimental 
values for the transport coefficients (at T=86.5K),  shows that a 
gravitation field in the range of 1014-1015 cm/sec 2 should yield a Rayleigh 
number characterizing convective behavior. 

The results of simulations of this system proved tantalizing, but not 
conclusive. In Fig. 6a, we show a contour plot of the stream function, 
which strongly suggests the existence of a convective state. However, this 
plot was taken as the system was relaxing to a final steady state (the 
pressure was changing over time). The pattern remained for a duration 
of about 500 psec and then disappeared, indicating that the state was a 
transient. Further, one would expect to see changes in the temperature 
profile and a jump in the Nusselt number, defined as 

N= Q 
kA T 

where Q is the heat flux across the layer, if system were in the convective 
regime. The temperature profile for our system (see Fig. 6b) remained 
essentially linear; the Nusselt number was not significantly different from 
unity. Kestemont and Mareschal (26) performed similar simulations with 
hard spheres and found the same kind of behavior. That is, the convection 
pattern seemed to appear and disappear over time. Similarly, their tem- 
perature profile remained linear across the system (no data were shown for 
the heat flux). The difficulties in finding the convective regime most 
probably lie in effects due to the boundary layers such as those discussed in 
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Fig. 6. (a) Streamline contours [(...) streamlines represent clockwise rotation; ( - - )  
streamlines represent counterclockwise rotation; ( - - - - - )  streamlines represent separate 
regions of opposite vorticity], (b) temperature profile, and (c) density profile for the 
Rayleigh-Benard convection. 

the above section on channel flow. In the density profile shown in Fig. 6c, 
we see that the fluid can be divided into three areas: one near the hot 
boundary, one near the cold boundary, and one in between, The two boun- 
dary layers encompass a significant part of the total system. The interplay 
between the onset of convection and the scale of the boundary layers (or 
the effective depth of the system, taking account of the boundary layers) 
could play a major role in determining whether we can or cannot see 
convection in such small systems. 
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7. CONCLUSIONS 

The feasibility of using molecular dynamics for simulating 
hydrodynamic phenomena is established. In our simulations and in those 
done elsewhere, MD systems not only exhibit spatial and temporal struc- 
tures, they also seem to obey the scaling relations associated with these 
phenomena in macroscopic theory and experiment. Because of com- 
putational intensity, it is very unlikely that the MD simulations will ever 
completely replace the more traditional methods for solving the 
Navier-Stokes equations. However, they can play an important role in sup- 
plementing these methods in describing macroscopic phenomena and 
provide microscopic underpinnings of the macroscopic theories. Further- 
more, MD can be used to study phenomena where the Navier-Stokes 
approach is no longer applicable. 
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